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This paper deals with nonlinear streaming effects in an oscillating fluid in a 
curved pipe. The secondary steady velocity field in the cross-sectional plane of 
the pipe is studied in detail. Our experimental results are compared with the 
theory of Lyne (1970; that part of his theory which is valid for Reynolds numbers 
R, < 1) and the theory of Zalosh & Nelson (1973). On the basis of these com- 
parisons we conclude that the theories are in practice valid for higher Reynolds 
numbers R, than was formally expected. 

1. Introduction 
It was shown by Lyne (1970) that an oscillating flow along a curved pipe (with 

circular cross-section) generates a secondary steady streaming in the cross- 
sectional plane of the pipe. The geometry of the problem is indicated in figure 1. 
There are three important parameters in the theory of Lyne (1970) : c2 = v2/Raw2, 
p = (2v/wu2)* and R, = 2e2/P2, where w is a typical velocity of the oscillating 
flow along the curved pipe, R the radius of curvature of the axis of the pipe, a the 
cross-sectional radius of the pipe, w the angular frequency of oscillation and v the 
kinematic viscosity of the fluid. Lyne (1970) used the method of matched asymp- 
totic expansions to obtain several terms in a perturbation solution for the stream 
function. The results are valid for c < 1, p < 1 and R, < 1 or R, 1. Zalosh & 
Nelson (1973) studied the same problem using another method of solution and 
their results are valid for arbitrary values of the parameter a = 24/P, but are 
restricted to R, < 1 only. As far as the steady streaming in the cross-sectional 
plane is concerned, a related problem has been studied by Kuwahara & Imai 
(1969). Thus the theoretical studies of this problem have been rather thorough. 
On the other hand, precise experimental investigations have not yet been carried 
out, at  least to the author’s knowledge. (For qualitative observations, see Drinker 
et al. 1969; Lyne 1971; Melrose et uZ. 1972.) Therefore we have carried out a close 
experimental investigation of the case where p < 1 and R, 5 1 and compared our 
experimental results with the two theories mentioned above. The agreement is 
good and only minor discrepancies are observed. These discrepancies can 
probably be explained by the finite aspect ratio 6 = a/R = 0-1 in the experiment; 
in the theories 6 = 0. 

In order to accomplish the comparison mentioned above, we need to quote 
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FIGURE 1. The geometry of the problem and the co-ordinate system referred 
to in the text. 

some of the theoretical results obtained by Lyne (1970) and by Zalosh & Nelson 
(1973). Lyne gave several terms in a matched asymptotic expansion of the stream 
function. On the basis of some of these terms a uniformly valid expression for the 
stream function associated with the secondary steady flow in the cross-sectional 
plane of the pipe may be writ,ten in the following way: 

x = Pxg"'(r, $) +P"x'l"'(r, $1 + X O O ( ' ,  $1 + RsXol(r, $1 +RZxoz(r, @) +P(XlO(', $1 
+RsXll(r, $1 + RZx12(r, $1) +P2{xzo(r, $1 +RsXzl(r, $)> - M(rt $; P, RSL (1) 

where the functions involved, except M(7,  $; P, RJ,  are given explicitly in Lyne 
(1970) as follows: X!)(q, $) by the steady part of Xo(y,  $), equation (3.26), p. 27; 
Xy)(q ,  $) by the steady part of XI(?, $), equation (3.41), p. 30; xoo, xol and xoz by 
equations (4.4), p. 36, (4.6), p. 37, and (4.8), p. 37, respectively; xl0, xI1 and x12 by 
equations (4.14), p. 38, (4.16), p. 38, and (4.18), p. 38, respectively; xz0 and xzl 
by equation (4.20), p. 39, as 

r is the dimensionless radial position T/a (T and $ are the radial and angular posi- 
tion, respectively, as indicated on figure 1). is the scaled variable in the Stokes 
layer and is defined by (see Lyne 1970) 

x(2) = x 2 0  +R,X21* (2) 

7 = (1  -r)/P. (3) 

The function M(7 ,  $;p, R,) is the common part of the inner and outer solutions 
in the matching region and is found to be to the relevant order 

M(q,  $; P, R,) = P{# - $7) sin $ +P{ - & + iv} sin $ 
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The stream function given by (1) is dimensionless. The physical, dimensional 
stream function is 

Y(?, $) = a2e2q(r,  $). ( 5 )  
The physical, dimensional radial velocity component U, is of special interest for 
the comparison with our experimental data and thus we have from Lyne (1971, 
equation (2.13), p. 17) 

(6) 
This definition of UL(T,$) serves as the basis for the comparison between the 
theory of Lyne (1970) and our experimental data. 

From the theoretical results of Zalosh & Nelson (1973) we have chosen the 
simplified expression for the secondary steady stream function given by the 
steady part of equation (3.12), p. 698, in their paper. This equation gives for the 
physical, dimensional stream function 

uL(p, +) = r-1 a~ (7, $)la$. 

@(?, 4) = ~ % ~ a % F ~ ( r )  cos 4, (7) 

where q5 = - $ -t in- and Fo(r) is defined a t  the bottom of p. 698 in Zalosh & Nelson 
(1973). The radial velocity component is 

(8) 

This definition of the radial velocity component has been used in the comparison 
between the theory of Zalosh & Nelson and our experimental data. 

q r ,  q5) = 7-1 a@(?, $)/a$. 

2. Apparatus and method of observation 
The secondary steady streaming in the cross-sectional plane of the curved pipe 

was studied experimentally using the equipment shown in figure 2 .  The curved 
pipe was made by first cutting a circular trace of semicircular cross-section in 
a Plexiglas slab (methylmethacrylate). The Plexiglas slab was then divided into 
t'wo equal parts diametrically relative to the circular trace, and finally the two 
parts were put together to make the curved pipe shown in figure 2. The curved 
pipe was linked to a pump (see figure 2) and filled with fluid. The pump forced the 
fluid to oscillate sinusoidally. The motion of the fluid was rendered visible by 
tracer particles (aluminium powder) and the particles were photographed using 
stroboscopic illumination synchronized to the frequency of oscillation or an 
integral part of this. This direct method of studying the motion in the cross- 
sectional plane requires an approximately undistorted image of this plane on 
the film. This was achieved by choosing a fluid with nearly the same index of 
refraction as the Plexiglas, i.e. 1-49. The fluid was a mixture of (1,2)-dibromo- 
ethanet and clear lubricating oils. It should be noted that pure (1,S)-dibromo- 
ethane dissolved the Plexiglas, but when mixed with at least an equal volume of 
lubricating oils, we found that this capability was sufficiently suppressed. The 
experiment could run for a whole day using such fluid mixtures without destroy- 
ing the Plexiglas tube, but the tube had to be cleaned immediately afterwards. 
We found that a mixture of approximately 70g Tellus Special Oil no. 15 (Shell) 
and 60g (1,2)-dibromoethane was a suitable fluid for this investigation. 

t For an explanation of this notation, see for example Hart & Schuetz (1966, p. 48). 
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FIGURE 2 .  Sketch of the apparatus used in the experimental investigation. A ,  pump; 
B, motor; C, signal to synchronize the ignition of the stroboscopic lamp to  a special phase 
of the oscillating piston; D,  stroboscopic unit; E,  stroboscopic lamp; P,  curved pipe; G ,  fluid 
reservoir; H ,  observation layer; J ,  constant-temperature bath; K ,  camera to observe the 
secondary streaming; L, camera to observe the amplitude of the oscillations. 

The tracks of the tracer particles appear as white lines on the photographs (see 
figure 3, plate I) .  The length of each line can be measured and the exposure time 
is known, which readily gives the velocity. This requires, of course, that each 
tracer particle which produces an image on the film does so for the whole exposure 
time. In the streaming problem that we are concerned with, there is a phase shift 
in the primary oscillations through the Stokes layer. The repetition of the light 
flashes from the stroboscopic lamp, however, is phase locked relative to the piston 
of the pump. This means that particles illuminated in this way can be lost from 
the field-depth region of the camera when they cross the Stokes layer. The 
consequence of this is that the radial component of the velocity field in the Stokes 
layer is scarcely measurable by this technique. But we have obtained other 
interesting experimental data, which are compared in the next section with the 
theories of Lyne (1970) and Zalosh & Nelson (1973). 

3. Results and discussion 
The gross features of the secondary steady streaming in the cross-sectional 

plane of the curved pipe observed in our experiment are shown in figure 3 (a). 
In order to get more precise information about the velocity field, we per- 
formed several series of measurements where the following quantities were 
measured. 
(a) The thickness S,, of the vortex systems in the Stokes layer, defined as 

follows: Suc(,++l=o is the distance, measured along the diameter $ = 0, T ,  from the 
wall of the pipe at $ = 0 to the nearest zero point of the radial velocity; SOcl+, is 
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the distance, measured along the diameter $ = 0,  n-, from the wall of the pipe at  
$ = IT to the nearest zero point of the radial velocity. Thus we have 

sDc(+o = a - - ~ & = ~  and SDcl+,, = a-Fol+r, 
where n = 0, 1, indicates the zero points mentioned above. 

( b )  The radial velocity component along the diameter $ = 0,  n-. 
Valuesof themost important parameter sin theinvestigationarelistedin table 1. 

From this table it can be seen that we have performed measurements essentially 
for various /3 and R,, because these quantities are important parameters in the 
theory of Lyne and a = 24/p is important in the theory of Zalosh & Nelson. 

A comparison between theoretical and experimental values of S,, is shown 
in figure 4. Prom this comparison we see that there is good agreement between 
our experimental results and the theories for p-’ > 15. For p-l < 15 we observed 
SDcl,+.=o < SDcI+n, which neither of the theories predicts. This can probably be 
explained by the finite aspect ratio S = a/r N_ 0.1 in our experiment; in the 
theories S = 0. Another point, however, is that the curved pipe usedin the experi- 
ment is U-shaped whereas in the theoretical models a toroidal pipe is considered. 
In  spite of this imperfection in the experimental model, we think that the finite 
aspect ratio is of greatest importance in explaining why SDcl~.=o < S,cIe.=n. This 
point is more closely discussed by Bertelsen (1974). 

Referring to figure 4, we see that Lyne’s theory predicts that the two inner 
(Stokes-layer) vortex systems occupy the whole cross-sectional plane for 

< 9.1 while Zalosh & Nelson’s theory gives p-1 < 7.4. It was difficult to 
observe accurately the transition from two to four vortex systems in the steady 
streaming in the cross-sectional plane, but certainly for p-l s: 8.7 only two 
vortex systems could be observed and for p-1 N- 10 four vortex systems existed. 
Thus the simplified version of Zalosh & Nelson’s theory predicts too low a p-l 
value for the transition to four-vortex streaming, while Lyne’s predictions for 
this transition are in good agreement with our observations. 

Figures 5 , 6  and 7 show the radial velocity component as a function of r along 
the diameter $ = 0, IT for various values of p-’ and R,. It can be seen from these 
figures that the theory of Lyne fits our experimental data nicely, while the 
simplified theory of Zalosh & Nelson seems to predict velocities which are too 
high for all parameter values involved in our experimental investigation. More 
precisely, this theory of Zalosh & Nelson overestimates the radial velocity in the 
centre of the cross-sectional plane by 25 yo for p-’ 2: 15.5 and by 10% for 
p-1 N 26.2 (figure 7). This improved agreement for higher P-l values is just what 
we should expect because the approximation used by Zalosh & Nelson to obtain 
their simplified theoretical results is based on p-’ 1. We estimate these theo- 
retical results to be practically applicable for p-1 2 30. On the other hand, if the 
more complicated expression for Fo(r) in Zalosh & Nelson’s theory (equation 
(3.6)’ p. 697) had been used, better agreement would have been obtained for both 
the thickness S,, of the inner (Stokes layer) vortex systems and the velocity for 
lower p-1 values as well. In this connexion it could also be relevant to point out 
that this theory is formally valid for small values of the parameter (a/R)  ( K u / w v ) ~  
(see table 1). 
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I I 1 I 
510 10.0 15.0 200 25.0 3 

P-' 
FIGURE 4. The thickness &C/a of the vortex systems in the Stokes layer as function of 8-1. 

0, measured values for 9 = 0; 0, measured values for @ = T. 
0.7 

I 
I \ 

I \ 

525 

1-0.2 

FIGURE 5. The radial component of the secondary steady streaming as a function of r along 
the diameter 9 = 0, T. -, theory of Lyne (1970) as expressed by our equation (6); 
_-- , asymptotic theory of Zalosh & Nelson (1973) as expressed by our equation (8). The two 
lower curves were obtained with parameter values as in series VIII, table 1; A, measured 
velocities in this series. The two upper curves were obtained with parameter values as in 
series IX, table 1; 0, measured velocities in this series. 
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FIGURE 6 
- 0.25 

FIGURE 7 

FIGURE 6. The radial component of the secondary steady streaming as a function of r along 
the diameter ~ = 0, 7 ~ .  -, theory of Lyne (1970) as expressed by our equation (6); 
_ _ _  , asymptotic theory of Zalosh & Nelson ( 1973) as expressed by our equation (8). The two 
lower curves were obtained with parameter values as in series X, table 1; A, measured 
velocities in this series. The two upper curves were obtained with parameter values as in 
series XI, table 1; 0, measured velocities in this series. 

FIGURE 7. The radial component of the secondary steady streaming as a function of r along 
the diameter $ = 0, 7r. -, theory of Lyne (1970) as expressed by our equation (6) ;  
_ _ _  , asymptotic theory of Zalosh & Nelson (1973) as expressed by our equation (8). 
The two lower curves were obtained with parameter values as in series VI, table 1; A, 
measured velocities in this series. The two upper curves were obtained with parameter 
values as in series VII, table 1; 0, measured velocities in this series. 

The theories of both Lyne and Zalosh & Nelson are formally valid for R, < 1 .  
In our investigation of the radial velocity 0.5 5 R, 5 2. All curvesin figure 5 have 
p-' z 15.5, while R, 5 0-48 on the lower curves and R, z 1-90 on the upper 
curves. Corresponding pairs of curves are given in figure 6. On the basis of the 
results shown in these figures, we conclude that the theory of Lyne (1970) seems 
to be valid for R, 5 2 provided that ,I-' 2 10. We expect approximately the same 
region of validity in R, for the simplified theory of Zalosh & Nelson for p-' 2 30. 
Referring to the theory of Lyne again, we notice that the various terms in the 
perturbation expansion in R, (i.e. xoo, xol, etc.) have favourable numerical 
coefficients, i.e. all terms are much less than one in the domain 1 < r < 0. This 
probably explains why Lyne's theoretical model for R, < I is valid in practice 
for higher R, values than was formally expected. 
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(b) 
FIGURE 3. (a) Gross features of the secondary steady streaming in the cross-sectional plane 
of the pipe as observed in our experimental investigation, series IX, table 1. (6) Streamline 
diagram from the theory of Lyne (1970) with parameter values as in (a). 
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